Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution

Author:

Ma Chih Ming,Hong Gui Bing,Lee Shang Chieh

Abstract

This research work reports an approach used to prepare a SnO2 photocatalyst by precipitation and calcination pathways and describes an investigation of the effects of preparation parameters on SnO2 yield. The SnO2 photocatalyst was further used for the photocatalytic degradation of Congo red (CR) dye, and the removal efficiency was optimized using response surface methodology. The results indicate that the SnO2 photocatalyst yield was the highest in 0.05 M of the precursor, stannous chloride and 28 wt % ammonia as the precipitant, pH 10, at 30 °C. The transmission electron microscopy results of the SnO2 photocatalyst illustrate that the average particle size was mainly around 30–50 nm and had a solid spherical shape. The X-ray diffraction results reveal that the prepared sample had a highly crystalline SnO2 rutile crystal structure. The prediction and experimental results of the Response surface methodology (RSM) indicate that, when the reaction time was 97 min, the operating temperature was 47 °C, the photocatalyst dosage was 751 mg/L, and the optimal degradation rate of the CR dye was 100%. After five consecutive photodegradation reactions, the degradation rate remained at 100%. The results demonstrated that the SnO2 photocatalyst prepared in this study possesses excellent reusability.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3