Eco-Friendly Mechanochemical Preparation of Ag2O–MnO2/Graphene Oxide Nanocomposite: An Efficient and Reusable Catalyst for the Base-Free, Aerial Oxidation of Alcohols

Author:

Adil Syed FarooqORCID,Assal Mohamed E.,Khan MujeebORCID,Shaik Mohammed RafiORCID,Kuniyil MufsirORCID,Sekou Doumbia,Dewidar Ahmed Z.,Al-Warthan Abdulrahman,Siddiqui Mohammed Rafiq H.ORCID

Abstract

Recently, the development of eco-friendly mechanochemical approaches for the preparation of novel catalysts with enhanced activity and selectivity has gained considerable attention. Herein, we developed a rapid and solvent-less mechanochemical method for the preparation of mixed metal oxide (Ag2O–MnO2) decorated graphene oxide (GRO)-based nanocomposites (Ag2O–MnO2/(X wt.%)GRO), as the Ag2O–MnO2/(X wt.%)GRO nanocomposite was fabricated by the physical grinding of freshly prepared GRO and pre-annealed (300 °C) mixed metal oxide nanoparticles (NPs) (Ag2O–MnO2) using an eco-friendly milling procedure. The as-prepared nanocatalysts were characterized by using various techniques. Furthermore, the nanocomposites were applied as a heterogeneous catalyst for the oxidation of alcohol by employing gaseous O2 as an eco-friendly oxidant under base-free conditions. The mechanochemically obtained GRO-based composite exhibited noticeable enhancement in the surface area and catalytic performance compared to the pristine Ag2O–MnO2. The results revealed that (1%)Ag2O–MnO2/(5 wt.%)GRO catalyst exhibited higher specific performance (13.3 mmol·g−1·h−1) with a 100% conversion of benzyl alcohol (BnOH) and >99% selectivity towards benzaldehyde (BnH) within 30 min. The enhancement of the activity and selectivity of GRO-based nanocatalyst was attributed to the presence of various oxygen-containing functional groups, a large number of defects, and a high specific surface area of GRO. In addition, the as-prepared nanocatalyst also demonstrated excellent catalytic activity towards the conversion of a variety of other alcohols to respective carbonyls under optimal conditions. Besides, the catalyst ((1%)Ag2O–MnO2/(5 wt.%)GRO) could be efficiently recycled six times with no noticeable loss in its performance and selectivity.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3