Thioxanthone Derivatives as a New Class of Organic Photocatalysts for Photopolymerisation Processes and the 3D Printing of Photocurable Resins under Visible Light

Author:

Hola Emilia,Pilch Maciej,Ortyl JoannaORCID

Abstract

In the present paper, novel thioxanthone-based compounds were synthesised and evaluated as a component of photoredox catalysts/photoinitiating systems for the free-radical polymerisation (FRP) of acrylates and the ring-opening cationic polymerisation (CP) of epoxy monomers. The performance of the obtained thioxanthones in two- and three-component photoinitiating systems, in combination with amines, iodonium or sulphonium salt, as well as with alkyl halide, for photopolymerisation processes upon exposure to light emitting diodes (LEDs) with a maximum emission of 405 nm and 420 nm, was investigated. The studied compounds act also as one-component free-radical photoinitiators. Fourier transform real-time infrared spectroscopy was used to monitor the kinetics of disappearance of the functional groups of the monomers during photoinitiated polymerisation. Excellent photoinitiating efficiency and high final conversions of functional groups were observed. Moreover, the influence of thioxanthone skeleton substitution on photoinitiating efficiency was discussed. The photochemical mechanism was also investigated through cyclic voltammetry. It was discovered that thioxanthone derivatives can be used as a metal-free photoredox catalyst active for both oxidative and reductive cycles. Furthermore, a photopolymerizable system based on novel thioxanthone derivatives in a stereolithography three-dimensional (3D) printing technology under visible sources of light was used. The effects of photoinitiator type system and monomer type in photoresins during 3D printing processes were explored. The outcome of this research is the development of high-performance visible photosensitive resins with improved photosensitivity obtained thanks to the development of entirely novel photoinitiating systems specifically adapted for this application.

Funder

Foundation for Polish Science

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3