Author:
Huang Jia,Nie Gang,Ding Yaobin
Abstract
To develop highly efficient heterogeneous photocatalysts for the activation of dissolved oxygen is very interesting in the field of green degradation of organic pollutants. In the paper, oxygen atom doped g-C3N4 (O-g-C3N4) was prepared via a facile chemical oxidation of g-C3N4 by peroxymonosulfate. X-ray photoelectron spectroscopy analysis suggests the oxidative treatment of g-C3N4 by peroxymonosulfate evidently increased atomic percentage of oxygen on O-g-C3N4 surface to 6.9% as compared with 1.8% for g-C3N4. Meanwhile, the doped oxygen atom mainly existed as carbonyl and carboxyl groups. Optical characterization indicates the introduction of oxygen improved the response of O-g-C3N4 to visible light, and more obviously, separation of photo-generated h+-e−. 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) probe measurement indicates the formation of O2•− was dramatically enhanced through activation of dioxygen by photo-generated electrons in the O-g-C3N4 photocatalytic system. Through high performance liquid chromatography (HPLC) and Liquid chromatography–mass spectrometry (LC-MS) analysis, it was found rhodamine B (RhB) photocatalytic degradation by O-g-C3N4 followed step by step N-deethylation reaction pathways induced by the formed O2•−, rather than the non-selective decomposition of the chromophore in RhB by other radicals, such as hydroxyl radicals. This study provides a facile method to develop oxygen atom doped g-C3N4 photocatalyst, and also clarifies its photocatalytic activation mechanism of molecular oxygen for N-deethylation reaction of RhB.
Funder
Fundamental Research Funds for the Central Universities
National Student Innovation Training Program
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献