Metal-Free Enhanced Photocatalytic Activation of Dioxygen by g-C3N4 Doped with Abundant Oxygen-Containing Functional Groups for Selective N-Deethylation of Rhodamine B

Author:

Huang Jia,Nie Gang,Ding Yaobin

Abstract

To develop highly efficient heterogeneous photocatalysts for the activation of dissolved oxygen is very interesting in the field of green degradation of organic pollutants. In the paper, oxygen atom doped g-C3N4 (O-g-C3N4) was prepared via a facile chemical oxidation of g-C3N4 by peroxymonosulfate. X-ray photoelectron spectroscopy analysis suggests the oxidative treatment of g-C3N4 by peroxymonosulfate evidently increased atomic percentage of oxygen on O-g-C3N4 surface to 6.9% as compared with 1.8% for g-C3N4. Meanwhile, the doped oxygen atom mainly existed as carbonyl and carboxyl groups. Optical characterization indicates the introduction of oxygen improved the response of O-g-C3N4 to visible light, and more obviously, separation of photo-generated h+-e−. 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) probe measurement indicates the formation of O2•− was dramatically enhanced through activation of dioxygen by photo-generated electrons in the O-g-C3N4 photocatalytic system. Through high performance liquid chromatography (HPLC) and Liquid chromatography–mass spectrometry (LC-MS) analysis, it was found rhodamine B (RhB) photocatalytic degradation by O-g-C3N4 followed step by step N-deethylation reaction pathways induced by the formed O2•−, rather than the non-selective decomposition of the chromophore in RhB by other radicals, such as hydroxyl radicals. This study provides a facile method to develop oxygen atom doped g-C3N4 photocatalyst, and also clarifies its photocatalytic activation mechanism of molecular oxygen for N-deethylation reaction of RhB.

Funder

Fundamental Research Funds for the Central Universities

National Student Innovation Training Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3