Evoked Methane Photocatalytic Conversion to C2 Oxygenates over Ceria with Oxygen Vacancy

Author:

Du Jin,Chen WeiORCID,Wu Gangfeng,Song Yanfang,Dong Xiao,Li Guihua,Fang Jianhui,Wei Wei,Sun Yuhan

Abstract

Direct conversion of methane to its oxygenate derivatives remains highly attractive while challenging owing to the intrinsic chemical inertness of CH4. Photocatalysis arises as a promising green strategy which could stimulate water splitting to produce oxidative radicals for methane C–H activation and subsequent C–C coupling. However, synthesis of a photocatalyst with an appropriate capability of methane oxidation by water remains a challenge using an effective and viable approach. Herein, ceria nanoparticles with abundant oxygen vacancies prepared by calcinating commercial CeO2 powder at high temperatures in argon are reported to capably produce ethanol and aldehyde from CH4 photocatalytic oxidation under ambient conditions. Although high-temperature calcinations lead to lower light adsorptions and increased band gaps to some extent, deficient CeO2 nanoparticles with oxygen vacancies and surface CeIII species are formed, which are crucial for methane photocatalytic conversion. The ceria catalyst as-calcinated at 1100 °C had the highest oxygen vacancy concentration and CeIII content, achieving an ethanol production rate of 11.4 µmol·gcat−1·h−1 with a selectivity of 91.5%. Additional experimental results suggested that the product aldehyde was from the oxidation of ethanol during the photocatalytic conversion of CH4.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3