Catalytic Cracking of Heavy Crude Oil over Iron-Based Catalyst Obtained from Galvanic Industry Wastes

Author:

Villamarin-Barriga EstefaníaORCID,Canacuán Jéssica,Londoño-Larrea PabloORCID,Solís Hugo,De La Rosa Andrés,Saldarriaga Juan F.ORCID,Montero CarolinaORCID

Abstract

Sewage sludge from the galvanic industry represents a problem to the environment, due to its high metal content that makes it a hazardous waste and must be treated or disposed of properly. This study aimed to evaluate the sludge from three galvanic industries and determine its possible use as catalysts for the synthesis of materials. Catalyst was obtained from a thermal process based on dried between 100–120 °C and calcination of sludges between 400 to 700 °C. The physical–chemical properties of the catalyst were analyzed by several techniques as physisorption of N2 and chemisorption of CO of the material. Catalytic activity was analyzed by thermogravimetric analysis of a thermo-catalytic decomposition of crude oil. The best conditions for catalyst synthesis were calcination between 400 and 500 °C, the temperature of reduction between 750 and 850 °C for 15 min. The catalytic material had mainly Fe as active phase and the specific surface between 17.68–96.15 m2·g−1, the catalysts promote around 6% more weight-loss of crude oil in the thermal decomposition compared with assays without the catalyst. The results show that the residual sludge of galvanic industries after thermal treatment can be used as catalytic materials due to the easiness of synthesis procedures required, the low E-factor obtained and the recycling of industrial waste promoted.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3