Revealing the Effect of Nickel Particle Size on Carbon Formation Type in the Methane Decomposition Reaction

Author:

Liang Wei,Yan Hao,Chen Chen,Lin Dong,Tan Kexin,Feng Xiang,Liu Yibin,Chen Xiaobo,Yang Chaohe,Shan Honghong

Abstract

Carbon species deposition is recognized as the primary cause of catalyst deactivation for hydrocarbon cracking and reforming reactions. Exploring the formation mechanism and influencing factors for carbon deposits is crucial for the design of rational catalysts. In this work, a series of NixMgyAl-800 catalysts with nickel particles of varying mean sizes between 13.2 and 25.4 nm were obtained by co-precipitation method. These catalysts showed different deactivation behaviors in the catalytic decomposition of methane (CDM) reaction and the deactivation rate of catalysts increased with the decrease in nickel particle size. Employing TG-MS and TEM characterizations, we found that carbon nanotubes which could keep catalyst activity were more prone to form on large nickel particles, while encapsulated carbon species that led to deactivation were inclined to deposit on small particles. Supported by DFT calculations, we proposed the insufficient supply of carbon atoms and rapid nucleation of carbon precursors caused by the lesser terrace/step ratio on smaller nickel particles, compared with large particles, inhibit the formation of carbon nanotube, leading to the formation of encapsulated carbon species. The findings in this work may provide guidance for the rational design of nickel-based catalysts for CDM and other methane conversion reactions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3