Understanding Surface Basic Sites of Catalysts: Kinetics and Mechanism of Dehydrochlorination of 1,2-Dichloroethane over N-Doped Carbon Catalysts

Author:

Shen Zhaobing,Han Yejun,Liu Yue,Qin Yejun,Xing Ping,Zhao Hong,Jiang Biao

Abstract

The production of vinyl chloride (VCM) by pyrolysis of 1,2-dichloroethane (DCE) is an important process in the ethylene-based poly(vinyl chloride) industry. The pyrolysis is performed at temperatures above 500 °C, gives low conversions, and has high energy consumption. We have shown that N-doped carbon catalysts give excellent performances in DCE dehydrochlorination at 280 °C. The current understanding of the active sites, mechanism, and kinetics of DCE dehydrochlorination over N-doped carbon catalysts is limited. Here, we showed that pyridinic-N on a N-doped carbon catalyst is the active site for catalytic production of vinyl chloride monomer from DCE. The results of CO2 and DCE temperature-programmed desorption experiments showed that the pyridinic-N catalytic sites are basic, and the mechanism of dehydrochlorination on a N-doped carbon catalyst involves a carbanion. A kinetic study of dehydrochlorination showed that the surface reaction rate on the N-doped carbon catalyst was the limiting step in the catalytic dehydrochlorination of DCE. This result enabled clarification of the dehydrochlorination mechanism and optimization of the reaction process. These findings will stimulate further studies to increase our understanding of the relationship between the base strength and catalytic performance. The results of this study provide a method for catalyst optimization, namely modification of the amount of pyridinic-N and the base strength of the catalyst, to increase the surface reaction rate of DCE dehydrochlorination on N-doped carbon catalysts.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3