CO2 Hydrogenation to Methanol over Ce and Zr Containing UiO-66 and Cu/UiO-66

Author:

Stawowy MichalinaORCID,Ciesielski Radosław,Maniecki Tomasz,Matus Krzysztof,Łużny Rafał,Trawczynski Janusz,Silvestre-Albero JoaquinORCID,Łamacz AgataORCID

Abstract

Direct hydrogenation of CO2 to methanol is an interesting method to recycle CO2 emitted e.g., during combustion of fossil fuels. However, it is a challenging process because both the selectivity to methanol and its production are low. The metal-organic frameworks are relatively new class of materials with a potential to be used as catalysts or catalysts supports, also in the reaction of MeOH production. Among many interesting structures, the UiO-66 draws significant attention owing to its chemical and thermal stability, developed surface area, and the possibility of tuning its properties e.g., by exchanging the zirconium in the nodes to other metal cations. In this work we discuss—for the first time—the performance of Cu supported on UiO-66(Ce/Zr) in CO2 hydrogenation to MeOH. We show the impact of the composition of UiO-66-based catalysts, and the character of Cu-Zr and Cu-Ce interactions on MeOH production and MeOH selectivity during test carried out for 25 h at T = 200 °C and p = 1.8 MPa. Significant increase of selectivity to MeOH was noticed after exchanging half of Zr4+ cations with Ce4+; however, no change in MeOH production occurred. It was found that the Cu-Ce coexistence in the UiO-66-based catalytic system reduced the selectivity to MeOH when compared to Cu/UiO-66(Zr), which was ascribed to lower concentration of Cu0 active sites in Cu/UiO-66(Ce/Zr), and this was caused by oxygen spill-over between Cu0 and Ce4+, and thus, the oxidation of the former. The impact of reaction conditions on the structure stability of tested catalyst was also determined.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3