Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts

Author:

Phumpradit Supanut,Reubroycharoen PrasertORCID,Kuchonthara Prapan,Ngamcharussrivichai Chawalit,Hinchiranan Napida

Abstract

Given the high accessibility of reactants to the active metal sites of fibrous catalysts, in this research, an electrospun silica fiber was applied as a support of nickel catalysts (Ni/SF) for the partial hydrogenation of palm oil fatty acid methyl ester (FAME) in a fixed-bed reactor. The textural properties, reducibility, Ni dispersion and morphology of Ni/SF catalysts were characterized and compared to those of a Ni/porous silica ball (Ni/SB). Under 1 bar H2 pressure at 140 °C, the 30 wt% Ni/SF catalyst exhibited a high turnover frequency (TOF) of 1396 h−1 to convert methyl linoleate (C18:2) to more saturated structures. On the other hand, the system using Ni/SB catalysts showed a TOF of only 141 h−1. This result was due to the effect of the higher acidity of the silica fiber, which promoted the higher adsorption of polyunsaturated portions in FAME. The non-porous characteristics and open morphology of the Ni/SF catalysts also allowed FAME and H2 molecules to easily access the Ni active sites deposited on the surface of the silica fiber and suppressed the selectivity to cis–trans isomerization. Stability testing of the Ni/SF catalyst showed that the C18:2 conversion decreased from 71% to 60% after long-term operation for 16 h possibly due to the weak metal–support interaction that facilitated Ni particle loss from the catalyst surface.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3