Effect of Molybdenum on the Activity Temperature Enlarging of Mn-Based Catalyst for Mercury Oxidation

Author:

Zhao Bo,Zhao Xiaojiong,Liang Yangshuo,Wang Yu,Qin Linbo,Chen Wangsheng

Abstract

The MnO2/TiO2 (TM5) catalyst modified by molybdenum was used for mercury oxidation at different temperatures in a fixed-bed reactor. The addition of molybdenum into TM5 was identified as significantly enlarging the optimal temperature range for mercury oxidation. The optimal mercury oxidation temperature of TM5 was only 200 °C, with an oxidation efficiency of 95%. However, the mercury oxidation efficiency of TM5 was lower than 60% at other temperatures. As for MnO2–MoO3/TiO2 (TM5Mo5), the mercury oxidation efficiency was above 80% at 200–350 °C. In particular at 250 °C, the mercury oxidation efficiency of TM5Mo5 was over 93%. Otherwise, the gaseous O2, which could supplement the lattice oxygen in the catalytic reaction, played an important role in the process of mercury oxidation over TM5Mo5. The results of X-ray photoelectron spectroscopy (XPS) suggested that mercury oxidized by O2 over TM5Mo5 followed the Mars–Maessen mechanism.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3