BiOCOOH Microflowers Decorated with Ag/Ag2CrO4 Nanoparticles as Highly Efficient Photocatalyst for the Treatment of Toxic Wastewater

Author:

Li Shijie,Xue Bing,Chen Jialin,Jiang Wei,Liu Yanping

Abstract

A novel flower-like Ag/Ag2CrO4/BiOCOOH heterojunction photocatalyst was synthesized by a facile in-situ precipitation strategy combined with photoreduction treatment. Morphological studies revealed that numerous Ag/Ag2CrO4 nanoparticles were evenly anchored on BiOCOOH microflowers, producing a novel heterojunction with the compactly interfacial contact. Optical absorption characterization demonstrated that Ag/Ag2CrO4/BiOCOOH possessed much better sunlight harvesting ability than Ag2CrO4/BiOCOOH and BiOCOOH. Photocatalytic experiments verified that compared with BiOCOOH, Ag2CrO4, Ag/Ag2CrO4, and Ag2CrO4/BiOCOOH, Ag/Ag2CrO4/BiOCOOH achieved remarkable efficiency by eliminating 100% of rhodamine B (RhB), 82.6% of methyl orange (MO) or 69.4% of ciprofloxacin (CIP) within 50 min at a catalyst dosage of 0.4 g/L. The high photocatalytic performance is likely owing to the improved sunlight response and the distinctly suppressed recombination of charge carriers arising from the formation of the novel 3D hierarchical heterostructure. The quenching test signified that h+, and •O2− were detected as the prevailing active species in wastewater treatment. This study may provide a viable strategy for enhancing the photocatalytic performance of wide band-gap semiconductors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3