Degradation of Acid Orange 7 Azo Dye in Aqueous Solution by a Catalytic-Assisted, Non-Thermal Plasma Process

Author:

Iervolino Giuseppina,Vaiano Vincenzo,Pepe Giacomo,Campiglia PietroORCID,Palma VincenzoORCID

Abstract

The aim of this work was the optimization of the performance of the cold plasma technology coupled with a structured catalyst for the discoloration and mineralization of “acid orange 7” (AO7) azo dye. The structured catalyst consists of Fe2O3 immobilized on glass spheres, and it was prepared by the “dip coating” method and characterized by different chemico-physical techniques. The experiments were carried out in a dielectric barrier discharge (DBD) reactor. Thanks to the presence of the catalytic packed material, the complete discoloration and mineralization of the dye was achieved with voltage equal to 12 kV, lower than those generally used with this technology (approximately 20–40 kV). The best result in terms of discoloration and mineralization (80% after only 5 min both for discoloration and mineralization) was obtained with 0.25 wt% of Fe2O3 immobilized on the glass spheres, without formation of reaction by-products, as shown by the HPLC analysis. The optimized catalyst was reused for several reuse cycles without any substantial decrease of performances. Moreover, tests with radical scavengers evidenced that the most responsible oxidizing species for the degradation of AO7 dye was O2•−.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3