Abstract
Meropenem (MER), a carbapenem, is considered a last-resort antibiotic. Its presence in water bodies, together with other antibiotics, has brought about environmental problems related to the destruction of natural microorganisms and the development of antibiotic-resistant bacteria. Herein, the degradation of MER by heterogeneous photocatalysis using TiO2 immobilized on fiberglass substrates is reported. Morphological characterization of the substrates was performed by Scanning Electron Microscopy (SEM). Three pH values (4.0, 5.7, and 7.9) were tested for the treatment of MER solutions (100 mg/L). The best rate constants and MER removals were obtained at pH 4.0 (0.032 min−1; 83.79%) and 5.7 (0.032 min−1; 83.48%). Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removals of 25.80% and 29.60% were achieved for the treatment at a pH value of 5.7. The reuse and regeneration of the plates were also tested. The activity of the substrates was maintained until the fourth cycle of reuse, nonetheless, a decrease in MER removal was observed for the 5th cycle. After the fourth cycle of reuse, the activity of the substrates was recovered by a regeneration procedure involving a wash stage of the substrates with a 1% H2O2 solution in an ultrasonic bath.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献