Higher Activity of Ni/γ-Al2O3 over Fe/γ-Al2O3 and Ru/γ-Al2O3 for Catalytic Ammonia Synthesis in Nonthermal Atmospheric-Pressure Plasma of N2 and H2

Author:

Iwamoto MasakazuORCID,Horikoshi Masataka,Hashimoto Ryu,Shimano Kaori,Sawaguchi Tomiko,Teduka Harunobu,Matsukata MasahikoORCID

Abstract

Developing a novel ammonia synthesis process from N2 and H2 is of interest to the catalysis and hydrogen research communities. γ-Alumina-supported nickel was determined capable of serving as an efficient catalyst for ammonia synthesis using nonthermal plasma under atmospheric pressure without heating. The catalytic activity was almost unrelated to the crystal structure and the surface area of the alumina carrier. The activity of Ni/Al2O3 was quantitatively compared with that of Fe/Al2O3 and Ru/Al2O3, which contained active metals for the conventional Haber–Bosch process. The activity sequence was Ni/Al2O3 > Al2O3 > Fe/Al2O3 > no additive > Ru/Al2O3, surprisingly indicating that the loading of Fe and Ru decreased the activity of Al2O3. The catalytic activity of Ni/Al2O3 was dependent on the amount of loaded Ni, the calcination temperature, and the reaction time. XRD, visual, and XPS observations of the catalysts before the plasma reaction indicated the generation of NiO and NiAl2O4 on Al2O3, the latter of which was generated upon high-temperature calcination. The NiO species was readily reduced to Ni metal in the plasma reaction, whereas the NiAl2O4 species was difficult to reduce. The catalytic behavior could be attributed to the production of fine Ni metal particles that served as active sites. The PN2/PH2 ratio dependence and rate constants of formation and decomposition of ammonia were finally determined for 5.0 wt% Ni/Al2O3 calcined at 773 K. The ammonia yield was 6.3% at an applied voltage of 6.0 kV, a residence time of reactant gases of 0.12 min, and PH2/PN2 = 1.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3