Substitution of Co with Ni in Co/Al2O3 Catalysts for Fischer–Tropsch Synthesis

Author:

Martinelli Michela,Karuturi Sai Charan,Garcia Richard,Watson Caleb D.,Shafer Wilson D.ORCID,Cronauer Donald C.,Kropf A. Jeremy,Marshall Christopher L.,Jacobs Gary

Abstract

The effect of cobalt substitution with nickel was investigated for the Fischer–Tropsch synthesis reaction. Catalysts having different Ni/Co ratios were prepared by aqueous incipient wetness co-impregnation, characterized, and tested using a continuously stirred tank reactor (CSTR) for more than 200 h. The addition of nickel did not significantly modify the morphological properties measured. XRD, STEM, and TPR-XANES results showed intimate contact between nickel and cobalt, strongly suggesting the formation of a Co-Ni solid oxide solution in each case. Moreover, TPR-XANES indicated that nickel addition improves the cobalt reducibility. This may be due to H2 dissociation and spillover, but is more likely the results of a chemical effect of intimate contact between Co and Ni resulting in Co-Ni alloying after activation. FTS testing revealed a lower initial activity when nickel was added. However, CO conversion continuously increased with time on-stream until a steady-state value (34%–37% depending on Ni/Co ratio) was achieved, which was very close to the value observed for undoped Co/Al2O3. This trend suggests nickel can stabilize cobalt nanoparticles even at a lower weight percentage of Co. Currently, the cobalt price is 2.13 times the price of nickel. Thus, comparing the activity/price, the catalyst with a Ni/Co ratio of 25/75 has better performance than the unpromoted catalyst. Finally, nickel-promoted catalysts exhibited slightly higher initial selectivity for light hydrocarbons, but this difference typically diminished with time on-stream; once leveling off in conversion was achieved, the C5+ selectivities were similar (≈ 80%) for Ni/Co ratios up to 10/90, and only slightly lower (≈ 77%) at Ni/Co of 25/75.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3