Rh-induced Support Transformation and Rh Incorporation in Titanate Structures and Their Influence on Catalytic Activity

Author:

Kiss János,Sápi AndrásORCID,Tóth Mariann,Kukovecz Ákos,Kónya ZoltánORCID

Abstract

Rh is one of the most effective metals in several technologically important heterogeneous catalytic reactions, like the hydrogenation of CO2, and CO, the CO+H2O reaction, and methane and ethanol transformations. Titania and titanates are among the most frequently studied supports for Rh nanoparticles. The present study demonstrates that the nature of the support has a marked influence on the specific activity. For comparison, the catalytic activity of TiO2 P25 is also presented. It is pointed out that a certain amount of Rh can be stabilized as cation (Rh+) in ion-exchange positions (i.e., in atomic scale distribution) of the titanate framework. This ionic form does not exists on TiO2. We pay distinguished attention not only to the electronic interaction between Rh metal and the titania/titanate support, but also to the Rh-induced phase transitions of one-dimensional titanate nanowires (TiONW) and nanotubes (TiONT). Support transformation phenomena can be observed in Rh-loaded titanates. Rh decorated nanowires transform into the TiO2(B) phase, whereas their pristine counterparts recrystallize into anatase. The formation of anatase is dominant during the thermal annealing process in both acid-treated and Rh-decorated nanotubes; Rh catalysis this transformation. We demonstrate that the phase transformations and the formation of Rh nanoclusters and incorporated Rh ions affect the conversion and the selectivity of the reactions. The following initial activity order was found in the CO2 + H2, CO + H2O and C2H5OH decomposition reactions: Rh/TiO2 (Degussa P25) ≥ Rh/TiONW > Rh/TiONT. On the other hand it is remarkable that the hydrogen selectivity in ethanol decomposition was two times higher on Rh/TiONW and Rh/TiO(NT) catalysts than on Rh/TiO2 due to the presence of Rh+ cations incorporated into the framework of the titanate structures.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3