Biocatalytic Epoxidation of Cyclooctene to 1,2-Epoxycyclooctane by a Newly Immobilized Aspergillus niger Lipase

Author:

Chen Qingsheng,Peng Fei,Li Fangzhou,Xia Gaohui,Zong Minhua,Lou Wenyong

Abstract

A newly immobilized Aspergillus niger lipase (ANL@ZnGlu-MNPs) was employed for the preparation of 1,2-epoxycyclooctane by oxidation of cyclooctene. The chosen variables, including substrate concentration, reaction temperature, immobilized enzyme dose, and H2O2 dose, were optimized in the reaction system of ethyl acetate. The yield and the enantiomeric excess of the product were achieved at 56.8% and 84.1%, respectively, under the following optimum reaction conditions: the concentration of substrate (cyclooctene) was 150 mM, the dosages of immobilized enzyme (ANL@ZnGlu-MNPs) and hydrogen peroxide were respectively 100 mg and 4.4 mmol, and the reaction was carried out in the system of 4 mL ethyl acetate at 40 °C. Further study on the operational stability of ANL@ZnGlu-MNPs showed that more than 51.6% of product yield was obtained after reusing for ten batches. A novel immobilized lipase was prepared and applied to synthesize 1,2-epoxycyclooctane from cyclooctene. Although ANL@ZnGlu-MNPs performs well in operational stability and the reaction can achieve high enantiomeric purity of the product, the yield of the catalytic reaction needs to be further improved.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3