Author:
Cen Yaqing,Yue Yuxue,Wang Saisai,Lu Jinyue,Wang Bolin,Jin Chunxiao,Guo Lingling,Hu Zhong-Ting,Zhao Jia
Abstract
Adsorption and activation for substrates and the stability of Pd species in Pd-based catalysts are imperative for their wider adoption in industrial and practical applications. However, the influence factor of these aspects has remained unclear. This indicates a need to understand the various perceptions of the structure–function relationship that exists between microstructure and catalytic performance. Herein, we revisit the catalytic performance of supported-ionic-liquid-phase stabilized Pd-based catalysts with nitrogen-containing ligands as a promoter for acetylene hydrochlorination, and try to figure out their regulation. We found that the absolute value of the differential energy, |Eads(C2H2)-Eads(HCl)|, is negative correlated with the stability of palladium catalysts. These findings imply that the optimization of the electron structure provides a new strategy for designing highly active yet durable Pd-based catalysts.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献