An Aging Model of NH3 Storage Sites for Predicting Kinetics of NH3 Adsorption, Desorption and Oxidation over Hydrothermally Aged Cu-Chabazite

Author:

Bozbag Selmi Erim,Şanlı Deniz,Özener Barkın,Hisar Gökhan,Erkey Can

Abstract

A unified transient kinetic model which can predict the adsorption, desorption and oxidation kinetics of NH3 over hydrothermally aged Cu-chabazite was developed. The model takes into account the variation of fractional coverages of NH3 storage sites due to hydrothermal aging. In order to determine the fractional coverage of these sites, the catalyst was aged for various times at a certain temperature followed by NH3 adsorption, desorption and temperature-programmed desorption (TPD) experiments. TPD profiles were deconvoluted mainly into three peaks with centres at 317, 456 and 526 °C, respectively. Hydrothermal aging resulted in the progressive increase in the intensity of the peak at 317 °C and decrease in the intensity of the peaks at 456 and 526 °C, along with decreased NH3 oxidation at high temperatures. A model for hydrothermal aging kinetics of the fractional coverage of storage sites was developed using three reactions with appropriate rate expressions with parameters regressed from experimental data. The model was then incorporated into a multi-site kinetic model for the degreened Cu-Chabazite by the addition of aging reactions on each storage site. The effects of both aging time and temperature on the kinetics NH3 adsorption, desorption and oxidation were successfully predicted in the 155-540 °C range. This study is the first step towards the development of a hydrothermal aging-unified kinetic model of NH3-Selective Catalytic Reduction over Cu-chabazite.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3