In Vivo Damage of the Head-Neck Junction in Hard-on-Hard Total Hip Replacements: Effect of Femoral Head Size, Metal Combination, and 12/14 Taper Design

Author:

Baleani MassimilianoORCID,Erani Paolo,Bordini Barbara,Zuccheri Federica,Mąkosa Mateusz,Beraudi Alina,Stea Susanna,

Abstract

Recently, concerns have been raised about the potential effect of head-neck junction damage products at the local and systemic levels. Factors that may affect this damage process have not been fully established yet. This study investigated the possible correlations among head-neck junction damage level, implant design, material combination, and patient characteristics. Head-neck junctions of 148 retrieved implants were analysed, including both ceramic-on-ceramic (N = 61) and metal-on-metal (N = 87) bearings. In all cases, the male taper was made of titanium alloy. Damage was evaluated using a four-point scoring system based on damage morphology and extension. Patient age at implantation, implantation time, damage risk factor, and serum ion concentration were considered as independent potential predicting variables. The damage risk factor summarises head-neck design characteristics and junction loading condition. Junction damage correlated with both implantation time and damage factor risk when the head was made of ceramic. A poor correlation was found when the head was made of cobalt alloy. The fretting-corrosion phenomenon seemed mainly mechanically regulated, at least when cobalt alloy components were not involved. When a component was made of cobalt alloy, the role of chemical phenomena increased, likely becoming, over implantation time, the damage driving phenomena of highly stressed junctions.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formulation and selection of composite biomaterials for acetabular cup of hip prosthesis with wear analysis;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-06-13

2. Micromechanical, corrosion and wet sliding wear behaviours of Co-28Cr-6Mo alloy: Wrought vs. LPBF;Materials Today Communications;2023-06

3. Surface Analysis of Ti-Alloy Micro-Grooved 12/14 Tapers Assembled to Non-Sleeved and Sleeved Ceramic Heads: A Comparative Study of Retrieved Hip Prostheses;Materials;2023-01-25

4. A case-driven hypothesis for multi-stage crack growth mechanism in fourth-generation ceramic head fracture;Journal of Orthopaedic Surgery and Research;2022-06-03

5. Comparative study of titanium alloys machinability used for medical applications;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3