An Application of Relative Entropy in Structural Safety Analysis of Elastoplastic Beam under Fire Conditions

Author:

Kamiński MarcinORCID,Strąkowski Michał

Abstract

The main aim of this work is to propose a new algorithm of reliability assessment for steel civil engineering structures subjected to fire temperatures. This new algorithm is based upon the relative probabilistic entropy concept elaborated by Bhattacharyya, and this probabilistic distance is sought in-between extreme and admissible deformations of some structural beam subjected to higher temperatures. Similar to the First Order Reliability Method, this approach uses the first two probabilistic characteristics of the structural response, when structural output may be modelled with the use of Gaussian distribution. The probabilistic structural response is found here using hybrid computational technique–the Finite Element Method system ABAQUS with its fully coupled thermo-elastic analysis with 3D solid elements and probabilistic modules implemented in the computer algebra system MAPLE. The probabilistic response is determined via a triple stochastic analysis, which is based on the classical Monte-Carlo simulation, iterative generalized stochastic perturbation technique, and also using semi-analytical probabilistic calculus. Final determination of the relative entropy in the Serviceability Limit State of the given structure and its comparison with the results obtained using the FORM analysis enables to calibrate this new technique to numerical values proposed in the engineering designing codes. Hence, a more accurate probabilistic method may use some experimental-based admissible values included in the existing design of legal provisions.

Funder

National Science Center

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference55 articles.

1. Melchers, R.E. (1999). Structural Reliability. Analysis and Prediction, Wiley. [2nd ed.].

2. (1993). Eurocode 3: Design of Steel Structures (Standard No. EN 1993–1-9).

3. On sequentially coupled thermo-elastic stochastic finite element analysis of the steel skeletal towers exposed to fire;Eur. J. Mech. Part A Solids,2017

4. Maślak, M. (2008). Fire Durability of Steel Bar Structures, Technical University of Cracow Press. (In Polish).

5. Behavior of steel bridge girders under fire conditions;Aziz;J. Constr. Steel Res.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3