Abstract
Accurate estimation of the thermal conductivity of porous materials is crucial for the modeling of heat transfer and energy consumption calculation in energy, aerospace, biomedicine and chemical engineering, etc. The series-parallel model is a simple and direct method and is usually used in the prediction of the effective thermal conductivity (ETC) of porous materials. In this work, the weighted coefficients of the series and parallel section were obtained based on the tortuosity of the porous materials. Then, the physical model of the ETC of the porous materials was established. Furthermore, the ETC of the porous materials was developed using the fractal model to calculate the pore cross-sectional area of the porous materials. Finally, quantitative analysis of the characteristic parameters, e.g., porosity, tortuosity, tortuous fractal dimension and pore diameter distribution, of the ETC of the porous materials was conducted. The results show that the proposed model can provide an accurate prediction of the ETC of porous materials.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献