Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization

Author:

Sarquah KhadijaORCID,Narra SatyanarayanaORCID,Beck Gesa,Bassey Uduak,Antwi Edward,Hartmann Michael,Derkyi Nana Sarfo Agyemang,Awafo Edward A.ORCID,Nelles Michael

Abstract

Reuse and recycling are preferred strategies in waste management to ensure the high position of waste resources in the waste management hierarchy. However, challenges are still pronounced in many developing countries, where disposal as a final solution is prevalent, particularly for municipal solid waste. On the other hand, refuse-derived fuel as a means of energy recovery provides a sustainable option for managing mixed, contaminated and residual municipal solid waste (MSW). This study provides one of the earliest assessments of refuse-derived fuel (RDF) from MSW in Ghana through a case study in the cities of Accra and Kumasi. The residual/reject fractions (RFs) of MSW material recovery were characterized for thermochemical energy purposes. The studied materials had the potential to be used as RDF. The combustible portions from the residual fractions formed good alternative fuel, RDF, under the class I, II-III classification of the EN 15359:2011 standards. The RDF from only combustible mixed materials such as plastics, paper and wood recorded a significant increase in the lower heating value (28.66–30.24 MJ/kg) to the mass RF, with the presence of organics (19.73 to 23.75 MJ/kg). The chlorine and heavy metal content met the limits set by various standards. An annual RDF production of 12 to 57 kilotons is possible from the two cities. This can offset 10–30% of the present industrial coal consumption, to about 180 kiloton/yr CO2 eq emissions and a net cost saving of USD 8.7 million per year. The market for RDF as an industrial alternative fuel is developing in Ghana and similar jurisdictions in this context. Therefore, this study provides insights into the potential for RDF in integrated waste management system implementation for socioeconomic and environmental benefits. This supports efforts towards achieving the Sustainable Development Goals (SDGs) and a circular economy.

Funder

German Federal Ministry for Education and Research

Open Access Publication Fund of the University of Rostock

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference60 articles.

1. A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste;Kumar;Waste Manag.,2017

2. Gendebien, A., Leavens, A., Blackmore, K., Godley, A., Lewin, K., Whiting, K.J., Davis, R., Giegrich, J., Fehrenback, H., and Gromke, U. (2020, April 01). Refuse Derived Fuel, Current Practice and Perspectives. Available online: https://www.undrr.org/organization/european-commission-directorate-general-environment.

3. Analysis and Comparison of Municipal Solid Waste and Reject Fraction as Fuels for Incineration Plants;Montejo;Appl. Therm. Eng.,2011

4. Chlorine Characterization and Thermal Behavior in MSW and RDF;Ma;J. Hazard. Mater.,2010

5. Comparison of the Combustion Characteristics and Kinetic Study of Coal, Municipal Solid Waste, and Refuse-Derived Fuel: Model-Fitting Methods;Azam;Energy Sci. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3