Effects of Depositional Processes in Submarine Canyons and Distribution of Gas Chimneys on Gas Hydrate Accumulation in the Shenhu Sea Area, Northern South China Sea

Author:

He YunlongORCID,Kuang Zenggui,Cheng Cong,Jiang TaoORCID,Zhang Cheng,Lu Biyu,Yang Chengzhi,Liu Jiayu,Xiang Changlong

Abstract

Previous gas hydrate production tests conducted by the Guangzhou Marine Geological Survey (GSGM) in 2017 and 2020 indicated the great potential of gas hydrates in the Shenhu Sea area in the Pearl River Mouth Basin (PRMB), China. In this study, the effects of deposition processes in submarine canyons and the distribution of gas chimneys on gas hydrate accumulation were investigated using high-resolution two- dimensional (2D) and three-dimensional (3D) seismic data. Four intact submarine canyons were identified in the study area. Five deepwater depositional elements are closely related to submarine canyons: lateral accretion packages (LAPs), basal lags, slides, mass transport deposits (MTDs), and turbidity lobes. MTDs and lobes with multiple stages outside the distal canyon mouth reveal that the sedimentary evolution of the canyon was accompanied by frequent sediment gravity flows. Gas chimneys originating from Eocene strata are generally up to 3 km wide and distributed in a lumpy or banded pattern. The analysis of seismic attributes confirmed fluid activity in these gas chimneys. Gas hydrates are mainly distributed in ridges among different canyons. Based on the gas sources of gas hydrates and depositional evolution of submarine canyons, depositional processes of sediment gravity flows in submarine canyons and the distribution of gas chimneys significantly affect the accumulation of gas hydrates. Based on these findings, this study establishes a conceptional model for the accumulation of gas hydrate, which can provide guidance in the prediction for favorable gas hydrates zones in the area and nearby.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference70 articles.

1. The potential volume of oceanic methane hydrates with variable external conditions;Dickens;Org. Geochem,2001

2. Energy resource potential of natural gas hydrates;Collett;Aapg. Bull.,2002

3. Current perspectives on gas hydrate resources;Boswell;Energ. Environ. Sci.,2011

4. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?;Milkov;Earth Sci. Rev.,2004

5. Global distribution of methane hydrate in ocean sediment;Klauda;Energ. Fuel,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3