Abstract
The concurrent planning of multiple Distributed Generations (DGs), consisting of solar-DG and DSTATCOM with reconfiguration in IEEE 33 and 69 bus Radial Distribution Network (RDN), using Adaptive Particle Swarm Optimization (APSO) and hybrid Grey Wolf-Particle Swarm Optimization (GWO-PSO), is reported in this paper. For this planning, a novel multiple objective-based fitness-function (MOFF) is proposed based on various performance parameters of the system, such as power losses (both active, as well as reactive loss), system voltage profile, short circuit level of line current (SCLLCurrent), and system reliability. The economic perspective of the system has also been considered based on the various costs, such as fix, loss, and Energy Not Supplied (ENS) cost. Two case studies have been presented on IEEE 33 and 69 bus RDN to validate the efficacy of the proposed methodology. The results analysis of the system shows that better performance can be achieved with the proposed technique for 33 and 69 bus RDN, using GWO-PSO rather than APSO. From this results analysis, a vital point is noticed that the SCLLCurrent is reduced, which causes the short-circuit (fault) tolerance capacity (level) of the RDN to become enhanced. Finally, the comparative analysis of the obtained results, using the proposed method with other methods that exist in different literature, reveals that the proposed method has performed better from a techno-economic prospective.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献