Abstract
CPC solar collectors are a combination of new technologies that make it possible to generate heat from radiant solar energy by transferring heat between the absorber and the fluid. This study was performed based on heat transfer equations by proposing a mathematical model, as reported in the literature. A compound parabolic concentrators solar collector (CPC) numerical model was simulated and coded in Aspen HYSYS and MATLAB software and validated by comparing its results with other researchers and experimental results. The simulated mathematical model includes a two-dimensional numerical model to describe the thermal and dynamic behavior of the fluid inside the CPC solar collector absorber tube. Numerical simulations of the fluid flow equations inside the CPC solar collector absorber tube, along with the energy equation for the absorber tube wall, coating, insulation and reflector, and solar collector heat analysis, were performed repeatedly in MATLAB and Aspen HYSYS software. This method is the most appropriate and reliable method for solving equations for numerical convergence. The experimental results of the parabolic concentrated solar collector (CPC) were used to evaluate and validate the numerical model. A solar compound parabolic concentrators collector (CPC) with short reflectors was used. This collector includes a cylindrical absorber with a real density ratio of 1.8, a reception angle of 22 degrees and a length of 2.81 m, a width of 0.32 m, and an opening of 0.1764 m. Analysis and uncertainty of the proposed model were performed with the measured sample. In the thermal efficiency analysis, the average deviation of the model from the experimental results of other researchers was equal to 7%, for increasing the temperature by 9 °C. According to these results, a good correlation between numerical results and experimental results for this proposed model has been obtained.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献