Extended Natural Gas Characterization Method for Improved Predictions of Freeze-Out in LNG Production

Author:

Attalla Hassan A.,El-Emam Nour A.,Aboul-Fotouh Tarek M.ORCID,May Eric F.ORCID

Abstract

The formation and the blockage of plant equipment such as heat exchangers by heavy hydrocarbon (HHC) solids is an inherent risk in cryogenic natural gas processing. The accuracy of the gas mixture’s compositional characterization significantly impacts the reliability of solid formaiton temperature predictions. Recently, we showed that complete characterization of the mixture is necessary to obtain accurate predictions of the melting temperature, as current methods based on pseudocomponent characterizations of HHCs are inadequate. Here, we present an improved method of characterizing HHCs that represents each pseudocomponent up to C14+ by a paraffinic, isoparaffinic, naphthenic and aromatic (PINA) composition and allocates an associated defined component to represent these sub-fractions. This new, extended PINA-based characterization of HHC pseudocomponents is derived from 46 different pipeline natural gas samples, and the method is validated against three representative gas samples that were fully characterized. The melting temperatures of the three gas samples based on their full characterizations are 263.2 K (14.1 °F), 260.1 K (8.5 °F) and 248.3 K (−12.8 °F), respectively. Predictions made with the new method match these within (1 to 2) K, while previous correlation methods under-predict them by (10 to 20) K. The improved performance arises from (1) the selection of suitable discrete components to represent each PINA fraction within a pseudocomponent, (2) the more representative distribution of PINA fractions as a function of carbon number, and (3) the use of discrete components to represent the pseudocomponent’s thermodynamic properties in both the fluid and solid phases. These results show how the new characterization method can reliably predict HHC freeze-out conditions, particularly when a full compositional analysis is unavailable. Future research should aim to test the new method on natural gas samples from regions other than the US Gulf Coast.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference15 articles.

1. Kidnay, A.J., and Parrish, W.R. (2006). Fundamentals of Natural Gas Processing, CRC Press.

2. Advanced predictions of solidification in cryogenic natural gas and LNG processing;Baker;J. Chem. Thermodyn.,2019

3. Yaws, C.L., and Gabbula, C. (2003). “Yaws” Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel.

4. Chen, F., and Ott, C.M. (LNG Industry Magazine, 2013). Lean gas, LNG Industry Magazine.

5. Ransbarger, W. (LNG Industry Magazine, 2007). A fresh look at LNG process efficiency, LNG Industry Magazine.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3