A Critical Review on Artificial Intelligence for Fuel Cell Diagnosis

Author:

Kishore Somasundaram Chandra,Perumal SugunaORCID,Atchudan RajiORCID,Alagan Muthulakshmi,Sundramoorthy Ashok K.ORCID,Lee Yong Rok

Abstract

In recent years, fuel cell (FC) technology has seen a promising increase in its proportion in stationary power production. Several pilot projects are in operation across the world, with the number of running hours steadily rising, either as stand-alone units or as part of integrated gas turbine–electric energy plants. FCs are a potential energy source with great efficiency and zero emissions. To ensure the best performance, they normally function within a confined temperature and humidity range; nevertheless, this makes the system difficult to regulate, resulting in defects and hastened deterioration. For diagnosis, there are two primary approaches: restricted input information, which gives an unobtrusive, rapid yet restricted examination, and advanced characterization, which provides a more accurate diagnosis but frequently necessitates invasive or delayed tests. Artificial Intelligence (AI) algorithms have shown considerable promise in providing accurate diagnoses with quick data collecting. This work focuses on software models that allow the user to evaluate many different possibilities in the shortest amount of time and is a vital method for proper and dynamic analysis of such entities. The artificial neural network, genetic algorithm, particle swarm optimization, random forest, support vector machine, and extreme learning machine are common AI approaches discussed in this review. This article examines the modern practice and provides recommendations for future machine learning methodologies in fuel cell diagnostic applications. In this study, these six AI tools are specifically explained with results for a better understanding of the fuel cell diagnosis. The conclusion suggests that these approaches are not only a popular and beneficial tool for simulating the nature of an FC system, but they are also appropriate for optimizing the operational parameters necessary for an ideal FC device. Finally, observations and ideas for future research, enhancements, and investigations are offered.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3