Author:
Huang Song-Hui,Chen Yu-Jia,Huang Wen-Fu,Uan Jun-Yen
Abstract
A functionally structured catalyst was explored for ethanol steam reforming (ESR) to generate H2. Aluminum lathe waste strips were employed as the structured catalytic framework. The mixed metal oxide (Li-Al-O) was formed on the surface of Al lathe waste strips through calcination of the Li-Al-CO3 layered double hydroxide (LDH), working as the support for the formation of Ni catalyst nanoparticles. NaOH and NaHCO3 titration solutions were, respectively, used for adjusting the pH of the NiCl2 aqueous solutions at 50 °C when developing the precursors of the Ni-based catalysts forming in-situ on the Li-Al-O oxide support. The Ni precursor on the Al structured framework was reduced in a H2 atmosphere at 500 °C for 3 h, changing the hydroxide precursor into Ni nanoparticles. The titration agent (NaOH or NaHCO3) effectively affected the physical and chemical characterizations of the catalyst obtained by the different titrations. The ESR reaction catalyzed by the structured catalysts at a relatively low temperature of 500 °C was studied. The catalyst using NaHCO3 titration presented good stability for generating H2 during ESR, achieving a high rate of H2 volume of about 122.9 L/(gcat·h). It also had a relatively low acidity on the surface of the Li-Al-O oxide support, leading to low activity for the dehydration of ethanol and high activity to H2 yield. The interactions of catalysts between the Ni precursors and the Li-Al-O oxide supports were discussed in the processes of the H2 reduction and the ESR reaction. Mechanisms of carbon formation during the ESR were proposed by the catalysts using NaOH and NaHCO3 titration agents.
Subject
Physical and Theoretical Chemistry,Catalysis