Design of γ-Alumina-Supported Phosphotungstic Acid-Palladium Bifunctional Catalyst for Catalytic Liquid-Phase Citral Hydrogenation

Author:

Shah Abdul Karim,Bukhari Syed Nizam-uddin Shah,Shah Ayaz Ali,Jatoi Abdul SattarORCID,Usto Muhammad Azam,Hashmi Zubair,Shah Ghulam Taswar,Park Yeung Ho,Choi Moo-Seok,Iqbal Arshad,Seehar Tahir Hussain,Raza Aamir

Abstract

This study primarily addresses the development of dynamic, selective and economical metal–acid (bifunctional) catalysts for one-pot menthol production by citral hydrogenation. Specifically, various metals such as Pd, Pt, Ni, Cs and Sn were doped over alumina support. Additionally, bifunctional composite catalysts were also prepared with the impregnation of heteropoly acids and Pd precursors over alumina support. Analytical techniques (e.g., BET, PXRD, FT-IR, pyridine adsorption and amine titration methods) were applied for characterization of the most efficient and selective catalysts (e.g., Al2O3 and PTA-Cat-I). Similarly, most of the essential operational variables (e.g., loading rate of metal precursor, type of heteropoly acid, temperature, gas pressure and reaction time) were examined during this study. The experimental data shows that the bifunctional catalyst (PTA-Cat-I) produced 45% menthol at full citral substrate conversion (r = 0.038 mmoles.min−1) in liquid-phase citral hydrogenation (at optimized operating conditions: 70 °C, 0.5 MPa and 8 h). However, the heteropoly acid-supported bifunctional catalysts (e.g., PTA-Cat-I, PMA-Cat-I, SMA-Cat-I and STA-Cat-I) resulted in cracking and the dehydration of isopulegol/menthol by the generation of side products (e.g., 4-isopropyl-1-methyl, cyclohex-1-ane/ene); therefore, menthol yield was extensively diminished. On the other hand, non-acidic catalysts (e.g., Cat-I, Cat-II, Cat-III, Cat-IV and Cat-V) readily promoted hydrogenation reactions. The optimum menthol yield occurred due to the presence of strong Lewis and weak Bronsted acid sites. Mass transfer and reaction rate were substantially diminished due to acidity strength, heteropoly acid type and blockage of pores by the applied bifunctional catalysts.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3