Lignin-Derived Ternary Polymeric Carbon as a Green Catalyst for Ethyl Levulinate Upgrading from Fructose

Author:

Yu DayongORCID,Liu XiaofangORCID,Luo Hangyu,Huang Jinshu,Li HuORCID

Abstract

Currently, the utilization of lignocellulose mainly focuses on the conversion of polysaccharide components to value-added chemicals, such as ethyl levulinate (EL). Lignin is an important component of lignocellulosic biomass that is often neglected. Herein, ternary polymeric carbon (TPC–S) was synthesized by polymerization of mixed monomers (4-methylphenol, 4-ethylphenol, and 4-propylphenol) derived from lignin and subsequent sulfonation, which was used as a heterogeneous catalyst for the transformation of fructose to EL. Through a series of characterization methods, it was illustrated that the prepared catalyst had a layered porous structure. The calculated carbon layer spacing is 0.413 nm, and the average pore size is 5.1 nm. This structure greatly increases the specific surface area (165.2 m2/g) of the catalyst, which makes it possible to introduce more –SO3H species in the process of sulfonation, thus furnishing EL with increased yield. The effects of reaction temperature, time, catalyst dosage, and fructose initial concentration on the production of EL were investigated. It was found that 70.3% EL yield was detected at 130 °C for 10 h. In addition, the catalyst had good stability and could obtain 65.6% yield of EL in the fourth cycle. The obtained catalyst has the advantages of low cost, easy preparation, and high catalytic efficiency, which is expected to achieve efficient utilization of lignin and provide a potential solution for the future production of EL.

Funder

the scientific research funds of Guiyang University

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3