Rice Straw as Green Waste in a HTiO2@AC/SiO2 Nanocomposite Synthesized as an Adsorbent and Photocatalytic Material for Chlorpyrifos Removal from Aqueous Solution

Author:

Shahawy Abeer ElORCID,Al-Mhyawi Saedah R.,Mubarak Mahmoud F.,Mousa Abdullah E.,Ragab Ahmed H.ORCID

Abstract

A nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2) is utilized to photo breakdown catalytically and adsorb chlorpyrifos insecticide. SEM, TEM, and X-ray diffraction were used to examine HTiO2@AC/SiO2, synthesized through sol–gel synthesis. With an average size of 7–9 nm, the crystallized form of HTiO2 is the most common form found. At varied pH, catalyst doses, agitation speed, initial pesticide concentrations, contact periods, and temperatures, HTiO2@AC/SiO2 was examined for efficiency under visible light and in darkness. Because of the pseudo-second-order kinetics observed for chlorpyrifos, chemisorption is believed to dominate the adsorption process, as indicated by an estimated activation energy of 182.769 kJ/mol, which indicates that chemisorption dominates the adsorption process in this study. The maximal adsorption capacity of chlorpyrifos is 462.6 mg g−1, according to the Langmuir isotherms, which infer this value. When exposed to visible light, the adsorption capacity of HTiO2@AC/SiO2 increased somewhat as the temperature rose (283 k 323 k 373 k), indicating an exothermic change in Gibbs free energy during the process (−1.8 kJ/mol), enthalpy change (−6.02 kJ/mol), and entropy change (0.014 J/mol K), respectively, at 298.15 K. Negative (ΔS) describes a process with decreased unpredictability and suggests spontaneous adsorption. HTiO2@AC/SiO2 may be a promising material.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3