Author:
Wang Zeyu,Luo Fengying,Wang Nan,Li Xinjun
Abstract
Cu2Y2O5 perovskite was reduced at different temperatures under H2 atmosphere to prepare two Cu-Y2O3 catalysts. The results of the activity test indicated that the Cu-Y2O3 catalyst after H2-reduction at 500 °C (RCYO-500) exhibited the best performance in the temperature range from 100 to 180 °C for water gas shift (WGS) reaction, with a CO conversion of 57.30% and H2 production of 30.67 μmol·gcat−1·min−1 at 160 °C and a gas hourly space velocity (GHSV) of 6000 mL·gcat−1·h−1. The catalyst reduced at 320 °C (RCYO-320) performed best at the temperature range from 180 to 250 °C, which achieved 86.44% CO conversion and 54.73 μmol·gcat−1·min−1 H2 production at 250 °C. Both of the Cu-Y2O3 catalysts had similar structures including Cu°, Cu+, oxygen vacancies (Vo) on the Cu°-Cu+ interface and Y2O3 support. RCYO-500, with a mainly exposed Cu° (100) facet, was active in the low-temperature WGS reaction, while the WGS activity of RCYO-320, which mainly exposed the Cu° (111) facet, was greatly enhanced above 180 °C. Different Cu° facets have different abilities to absorb H2O and then dissociate it to form hydroxyl groups, which is the main step affecting the catalytic rate of the WGS reaction.
Funder
National Key R&D Program of China
Natural Science Foundation of Guangdong Province, China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献