First-Principles Study of Stability and N2 Activation on the Octahedron RuRh Clusters

Author:

Zhang Nan,Ma Lixia,Huang Luo,Zhu Houyu,Jiang Ruibin

Abstract

The geometric and electronic structures of different octahedron RuRh clusters are studied using density functional theory calculations. The binding energy, electronic structure, and energy gap of the clusters have been obtained to determine the possible stable structures. The results show that the Ru4Rh2 cluster is the most stable structure which has D4h symmetry with the largest ionization potential, smallest affinity energy and larger energy gap. Furthermore, the information on adsorption and dissociation of multiple nitrogen molecules and the density of state for the octahedral Ru4Rh2 cluster is analyzed. The dissociation barrier of three nitrogen molecules further decreases to 1.18 eV with an increase in the number of N2 molecules. The co-adsorption of multiple N2 molecules facilitates the dissociation of N2 on the Ru4Rh2 cluster. The strong interaction between the antibonding orbital of N2 and the d orbital of the Ru4Rh2 cluster is illustrated by calculating and analyzing the results of PDOS, which stretches the N−N bond length and reduces the activation energy to dissociation. The antibonding orbital of the nitrogen molecule shows distinct and unique catalytic activity for the dissociation of the adsorbed nitrogen molecule on the octahedral Ru4Rh2 cluster.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3