Highly Photoactive Titanium Dioxide Supported Platinum Catalyst: Synthesis Using Cleaner Ultrasound Approach

Author:

Potdar Shital B.ORCID,Huang Chao-Ming,Praveen BVSORCID,Manickam Sivakumar,Sonawane Shirish H.

Abstract

Catalysts increase reaction rates; however, the surface area to volume ratio of catalysts has a vital role in catalytic activity. The noble metals such as platinum (Pt) and gold (Au) are expensive; despite this, they have proven their existence in catalysis, motivating the synthesis of supported metal catalysts. Metal catalysts need to be highly dispersed onto the support. In this investigation, an ultrasound approach has been attempted to synthesise highly photoactive titanium dioxide (TiO2) nanoparticles by the hydrolysis of titanium tetraisopropoxide in an acetone/methanol mixture. To enhance its photocatalytic activity, TiO2 was doped with Pt. The synthesised photocatalyst was characterised by techniques such as particle size analysis (PSA), XRD, FE-SEM, TEM, and EDX. The enhancement in the surface characteristics of Pt-doped TiO2 compared with bare TiO2 support was confirmed with Brunauer–Emmett–Teller (BET) analysis. The enhanced surface area and uniformity in particle size distribution at the nanoscale level were due to the effects of ultrasonic irradiation. The obtained results corroborated the size and composition of the synthesised catalysts. The size of the catalysts is in the nanometre range, and good dispersion of Pt catalysts over the TiO2 support was observed. The UV-Visible spectroscopy analysis was performed to study the optical properties of the synthesised TiO2 and Pt/TiO2 photocatalysts. An increase in the absorbance was noted when Pt was added to TiO2, which is due to the decrease in the band gap energy.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3