Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation

Author:

Mendes-Felipe CristianORCID,Veloso-Fernández Antonio,Vilas-Vilela José Luis,Ruiz-Rubio LeireORCID

Abstract

Mismanagement, pollution and excessive use have depleted the world’s water resources, producing a shortage that in some territories is extreme. In this context, the need for potable water prompts the development of new and more efficient wastewater treatment systems to overcome shortages by recovering and reusing contaminated water. Among the water treatment methods, membrane technology is considered one of the most promising. Besides, photocatalytic degradation has become an attractive and efficient technology for water and wastewater treatment. However, the use of unsupported catalysts has as its main impediment their separation from the water once treated. With this, providing the membranes with this photocatalyzed degradation capacity can improve the application of photocatalysts, since in many cases their application improves their recovery and reuse. This review describes the general photocatalytic processes of the main inorganic nanoparticles used as fillers in hybrid polymeric membranes. In addition, the most recent hybrid organic–inorganic membranes are reviewed. Finally, the membranes formed by metal–organic frameworks that can be considered one of the newest and most versatile developments are described.

Funder

MINECOG

Gobierno Vasco

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference104 articles.

1. Human Development Report 2019: Beyond Income, beyond Averages, beyond Today,2019

2. World Health Organization Drinking-Waterhttps://www.who.int/news-room/fact-sheets/detail/drinking-water

3. Four billion people facing severe water scarcity

4. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries

5. Introduction of water remediation processes;Lade,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3