Microwave-Assisted CO Oxidation over Perovskites as a Model Reaction for Exhaust Aftertreatment—A Critical Assessment of Opportunities and Challenges

Author:

Röhrens DanielORCID,Abouserie Ahed,Wang Bangfen,Haselmann Greta,Simon UlrichORCID

Abstract

We introduce a microwave (MW)-assisted heterogeneous catalytical setup, which we carefully examined for its thermal and performance characteristics. Although MW-assisted heterogeneous catalysis has been widely explored in the past, there is still need for attention towards the specific experimental details, which may complicate the interpretation of results and comparability in general. In this study we discuss technical and material related factors influencing the obtained data from MW-assisted heterogeneous catalysis, specifically in regards to the oxidation of carbon monoxide over a selected perovskite catalyst, which shall serve as a model reaction for exhaust gas aftertreatment. A high degree of comparability between different experiments, both in terms of setup and the catalysts, is necessary to draw conclusions regarding this promising technology. Despite significant interest from both fundamental and applied research, many questions and controversies still remain and are discussed in this study. A series of deciding parameters is presented and the influence on the data is discussed. To control these parameters is both a challenge but also an opportunity to gain advanced insight into MW-assisted catalysis and to develop new materials and processes. The results and discussion are based upon experiments conducted in a monomode MW-assisted catalysis system employing powdered solid-state perovskite oxides in a fixed bed reactor. The discussion covers critical aspects concerning the determination of the actual catalyst temperature, the homogeneity of the thermal distribution, time, and local temperature relaxation (i.e., thermal runaway effects and hotspot formation), particle size effects, gas flow considerations, and system design.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3