Abstract
In this work, we study the effect of modifying the metal loading (0.5–1.5 wt.% Pd and 0.1–1 wt.% Sn or In), the impregnation order of noble or promoter metal (Pd–Sn or Sn–Pd), and the type of promoter metal (Sn or In) during the preparation process for a Pd bimetallic catalyst, supported on γ-alumina, used in the catalytic reduction of nitrate. The deposition of the noble metal over the promoter metal, especially with Pd:Sn ratios (wt.) of 1:10 and 1:2, favored the hydrogen spillover rate and increased the H concentration on the catalyst surface, enhancing NH4+ production. On the other hand, Pd–In catalysts showed higher activity than the Sn catalysts, as well as higher NH4+ selectivity. The stability of the Pd–Sn/Al2O3 (1.5–1 wt.%) catalyst was evaluated in long-term experiments for the treatment of synthetic water (100 mg L−1 NO3−) and three different commercial drinking waters. This Pd–Sn/Al2O3 catalyst achieved a stable nitrate conversion for a duration of 50 h in the synthetic water treatment. However, the catalyst showed a significant activity loss in the presence of other ions (different to NO3−) in the reaction medium, increasing slightly the selectivity to NH4+.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Reference50 articles.
1. Nitrate intake from drinking water on Tenerife Island (Spain);Mesa;Sci. Total Environ.,2003
2. Nitrate in drinking water and bladder cancer risk in Spain
3. Drinking Water Nitrate and Human Health: An Updated Review
4. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources;Off. J. Eur. Communities,1991
5. Nitrate and Nitrite in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality;World Health Organization,2003
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献