Engineering the Activity of Old Yellow Enzyme NemR-PS for Efficient Reduction of (E/Z)-Citral to (S)-Citronellol

Author:

Feng Binbin,Li Xia,Jin Lijun,Wang Yi,Tang Yi,Hua Yuhao,Lu ChenzeORCID,Sun Jie,Zhang YinjunORCID,Ying XiangxianORCID

Abstract

The cascade catalysis of old yellow enzyme, alcohol dehydrogenase and glucose dehydrogenase has become a promising approach for one pot, two-step reduction of (E/Z)-citral to (S)-citronellol, serving as a chiral alcohol with rose fragrance. During the multi-enzymatic cascade catalysis, old yellow enzyme is responsible for the reduction of the conjugated C=C and the introduction of the chiral center, requiring high activity and (S)-enantioselectiviy. Herein, to improve the activity of the old yellow enzyme from Providencia stuartii (NemR-PS) with strict (S)-enantioselectivity, the semi-rational design on its substrate binding pocket was performed through a combination of homology modeling, molecular docking analysis, alanine scanning and iterative saturation mutagenesis. The NemR-PS variant D275G/F351A with improved activity was obtained and then purified for characterization, obeying the substrate inhibition kinetics. Compared with the wild type, the parameters Ki and Kcat/Km were increased from 39.79 mM and 2.09 s−1mM−1 to 128.50 mM and 5.01 s−1mM−1, respectively. Moreover, the variant D275G/F351A maintained strict (S)-enantioselectivity, avoiding the trade-off effect between activity and enantioselectivity. Either the enzyme NemR-PS or the variant D275G/F351A was co-expressed with alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) and glucose dehydrogenase from Bacillus megaterium (BmGDHM6). In contrast to the whole-cell biocatalyst co-expressing NemR-PS, that co-expressing the variant D275G/F351A shortened the reaction time from 36 h to 12 h in the reduction of 400 mM (E/Z)-citral. In the manner of substrate constant feeding, the accumulated product concentration reached up to 500 mM and completely eliminate the residual intermediate and by-product, suggesting the effectiveness of protein engineering and substrate engineering to improve catalytic efficiency.

Funder

Key Projects of Technological Innovation and Application Development of Chongqing City, China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3