Computational Analysis of Structure–Activity Relationships in Highly Active Homogeneous Ruthenium−Based Water Oxidation Catalysts

Author:

Bury GabrielORCID,Pushkar Yulia

Abstract

Linear free−energy scaling relationships (LFESRs) and regression analysis may predict the catalytic performance of heterogeneous and recently, homogenous water oxidation catalysts (WOCs). This study analyses thirteen homogeneous Ru−based catalysts—some, the most active catalysts studied: the Ru(tpy−R)(QC) and Ru(tpy−R)(4−pic)2 complexes, where tpy is 2,2’;6’,2”terpyridine, QC is 8−quinolinecarboxylate and 4−pic is 4−picoline. Typical relationships studied among heterogenous catalysts cannot be applied to homogeneous catalysts. The selected group of structurally similar catalysts with impressive catalytic activity deserves closer computational and statistical analysis of multiple reaction step energetics correlating with measured catalytic activity. We report general methods of LFESR analysis yield insufficiently robust relationships between descriptor variables. However, volcano−plot−based analysis grounded in Sabatier’s principle reveals ideal relative energies of the RuIV = O and RuIV−OH intermediates and optimal changes in free energies of water nucleophilic attack on RuV = O. A narrow range of RuIV−OH to RuV = O redox potentials corresponding with the highest catalytic activities suggests facile access to the catalytically competent high−valent RuV = O state, often inaccessible from RuIV = O. Our work incorporates experimental oxygen evolution rates into approaches of LFESR and Sabatier−principle−based analysis, identifying a narrow yet fertile energetic landscape to bountiful oxygen evolution activity, leading to future rational design.

Funder

National Science Foundation

National Institutes of Health

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3