Synthesis of (S)- and (R)-β-Tyrosine by Redesigned Phenylalanine Aminomutase

Author:

Peng Fei,Aliyu HabibuORCID,Delavault AndréORCID,Engel Ulrike,Rudat JensORCID

Abstract

Phenylalanine aminomutase from Taxus chinensis (TchPAM) is employed in the biosynthesis of the widely used antitumor drug paclitaxel. TchPAM has received substantial attention due to its strict enantioselectivity towards (R)-β-phenylalanine, in contrast to the bacterial enzymes classified as EC 5.4.3.11 which are (S)-selective for this substrate. However, the understanding of the isomerization mechanism of the reorientation and rearrangement reactions in TchPAM might support and promote further research on expanding the scope of the substrate and thus the establishment of large-scale production of potential synthesis for drug development. Upon conservation analysis, computational simulation, and mutagenesis experiments, we report a mutant from TchPAM, which can catalyze the amination reaction of trans-p-hydroxycinnamic acid to (R)- and (S)-β-tyrosine. We propose a mechanism for the function of the highly conserved residues L179, N458, and Q459 in the active site of TchPAM. This work highlights the importance of the hydrophobic residues in the active site, including the residues L104, L108, and I431, for maintaining the strict enantioselectivity of TchPAM, and the importance of these residues for substrate specificity and activation by altering the substrate binding position or varying the location of neighboring residues. Furthermore, an explanation of (R)-selectivity in TchPAM is proposed based on the mutagenesis study of these hydrophobic residues. In summary, these studies support the future exploitation of the rational engineering of corresponding enzymes with MIO moiety (3,5-dihydro-5-methylidene-4H-imidazole-4-one) such as ammonia lyases and aminomutases of aromatic amino acids.

Funder

China Scholarship Council

BBW ForWerts

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3