Abstract
The kinetics for crude glycerol autothermal reforming was studied over S/C ratio of 2.6 and O2/C ratio of 0.125 using 5% Ni/CeZrCa catalyst. Both power law and mechanistic kinetic models were studied. The overall power law model for crude glycerol autothermal reforming was investigated with a pre-exponential factor of 4.3 × 1010 mol/gcat·min and activation energy of 8.78 × 104 J/mol. The reaction orders with respect to crude glycerol, water and oxygen are 1.04, 0.54 and 1.78 respectively. The power law model presented an absolute average deviation of 5.84%, which showed a good correlation between the predicted and experimental rate. Mechanistic models were developed for crude glycerol autothermal reforming. For steam reforming, the Eley–Rideal approach best described the reaction rate with the surface reaction being the rate-determining step (AAD < 10%). The kinetics of the total oxidation reaction was best described by the power law model with an AAD of less than 1%, whereas for the TOR process, the molecular adsorption of crude glycerol with an AAD of 14.6% via Langmuir Hinshelwood Hougen-Watson approach was best. CO2 methanation resulted in an AAD of 5.8% for the adsorption of carbon dioxide (CO2) by the Eley–Rideal mechanism.
Funder
Natural Sciences and Engineering Research Council
Canada Foundation for Innovation
Faculty of Engineering - U of R
University of Regina
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献