Abstract
Conventional pretreatment and secondary biochemical treatment are ineffective methods for removing phosphorus from phosphorus-containing pesticide wastewater. In this study, coagulation-coupled ozone catalytic oxidation was used to treat secondary biochemical tailwater of phosphorus-containing pesticide wastewater thoroughly. The effects of the coagulant type, coagulant dosage, coagulant concentration, wastewater pH, stirring rate, and stirring time on the removal efficiency of chemical oxygen demand (COD), total phosphorus (TP), and chromaticity were investigated during coagulation. When the dosage of the coagulant PAFS was equal to 100 mg/L, the concentration of the coagulant, pH, stirring rate, and stirring time were 5 wt%, 8, 100 rpm, and 5 min, respectively, and the removal rates of COD, TP, and chroma in wastewater reached the maximum value of 17.6%, 86.8%, and 50.0%, respectively. Effluent after coagulation was treated via ozone catalytic oxidation. When the respective ozone dosage, H2O2 dosage, catalyst dosage, and reaction time were 120 mg/L, 0.1 vt‰, 10 wt%, and 90 min, residual COD and chromaticity of the final effluent were 10.3 mg/L and 8, respectively. The coagulation-coupled ozone catalytic oxidation process has good application prospects in the treatment of secondary biochemical tailwater from phosphorus-containing pesticide wastewater.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献