Author:
Jiang Feng,Gao Jiansha,Lang Di
Abstract
Photocatalytic studies on contaminant degradation in water suspension generally suggest that the degradation reaction mainly takes place on the surface of the photocatalysts rather than in the water phase. The mechanism of selective degradation is often difficult to distinguish concerning the contribution of adsorption and radical selectivity. This study is thus designed to investigate the roles of two types of hydroxyl radicals, adsorbed hydroxyl radical (·OHa) and free hydroxyl radical (·OHf), on the selective degradation of catechol (CT) and resorcinol (RE). CT and RE are significantly different in adsorption on a TiO2 photocatalyst with a highly exposed {001} facet. CT can be selectively degraded by TiO2 and was highly correlated with adsorption. Free radical quenching experiment results showed that the degradation of CT can be identified as the combined effect of both ·OHa and ·OHf, while the degradation of RE was mainly due to the ·OHf. Electron paramagnetic resonance coupled with spin trapping agents was used to detect the relative concentration of hydroxyl radicals in all the photocatalytic degradation processes. After a series analysis, we proposed that the mechanism of selective degradation mainly depends on the concentration of ·OHf for the pollutant molecules with weak adsorption on the catalyst surface.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects
Subject
Physical and Theoretical Chemistry,Catalysis