Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection

Author:

Gorbova Elena,Tzorbatzoglou Fotini,Molochas Costas,Chloros Dimitris,Demin Anatoly,Tsiakaras PanagiotisORCID

Abstract

The rapid development of science, technology, and engineering in the 21st century has offered a remarkable rise in our living standards. However, at the same time, serious environmental issues have emerged, such as acid rain and the greenhouse effect, which are associated with the ever-increasing need for energy consumption, 85% of which comes from fossil fuels combustion. From this combustion process, except for energy, the main greenhouse gases-carbon dioxide and steam-are produced. Moreover, during industrial processes, many hazardous gases are emitted. For this reason, gas-detecting devices, such as electrochemical gas sensors able to analyze the composition of a target atmosphere in real time, are important for further improving our living quality. Such devices can help address environmental issues and inform us about the presence of dangerous gases. Furthermore, as non-renewable energy sources run out, there is a need for energy saving. By analyzing the composition of combustion emissions of automobiles or industries, combustion processes can be optimized. This review deals with electrochemical gas sensors based on solid oxide electrolytes, which are employed for the detection of hazardous gasses at high temperatures and aggressive environments. The fundamentals, the principle of operation, and the configuration of potentiometric, amperometric, combined (amperometric-potentiometric), and mixed-potential gas sensors are presented. Moreover, the results of previous studies on carbon oxides (COx), nitrogen oxides (NOx), hydrogen (H2), oxygen (O2), ammonia (NH3), and humidity (steam) electrochemical sensors are reported and discussed. Emphasis is given to sensors based on oxygen ion and proton-conducting electrolytes.

Funder

co-financing from the European Union and Greek national funds through the Operational Pro-gram for Competitiveness, Entrepreneurship, and Innovation, under the program RESEARCH–CREATE–INNOVATE

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3