Effect of Morphology-Dependent Oxygen Vacancies of CeO2 on the Catalytic Oxidation of Toluene

Author:

Ismail AhmedORCID,Zahid MuhammadORCID,Hu Boren,Khan Adnan,Ali NaumanORCID,Zhu YujunORCID

Abstract

Catalytic oxidation is regarded as an effective, economical, and practical approach to remove volatile organic compounds such as important air pollutants. CeO2 catalysts with different morphologies exhibit different oxygen vacancies content, which plays a vital role in oxidation reaction. Herein, three distinct morphologies of CeO2 i.e., shuttle (CeO2 (S)), nanorod (CeO2 (R)), and nanoparticle (CeO2 (P)), were successfully fabricated by the SEM and TEM results, and investigated for toluene catalytic oxidation. The various characterizations showed that the CeO2 (S) catalyst exhibited a larger surface area along with higher surface oxygen vacancies in contrast to CeO2 (R) and CeO2 (P), which is responsible for its excellent toluene catalytic oxidation. The 90% toluene conversion temperature at 225 °C over CeO2 (S) was less than that over CeO2 (R) (283 °C) and CeO2 (P) (360 °C). In addition, CeO2 (S) showed a greater reaction rate (14.37 × 10−2 μmol∙g−1∙s−1), TOFov (4.8 × 10−4∙s−1) at 190 °C and lower activation energy value (67.4 kJ/mol). Furthermore, the CeO2 (S) also displayed good recyclability, long-term activity stability, and good tolerance to water. As a result, CeO2 (S) is considered a good candidate to remove toluene.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3