Study of the Relationship between Metal–Support Interactions and the Electrocatalytic Performance of Pt/Ti4O7 with Different Loadings

Author:

Sun Xiuyu,Wang Zhenwei,Yan Wei,Zhou Chuangan

Abstract

The application potential of Pt/Ti4O7 has been reported, but the lack of research on the relationship between Pt loading, MSI, and catalytic activity hinders further development. Micron-sized Ti4O7 powders synthesized by a thermal reduction method under an H2 atmosphere were used as a support material for Pt-based catalysts. Using a modified polyol method, Pt/Ti4O7-5, Pt/Ti4O7-10, and Pt/Ti4O7-20 with different mass ratios (Pt to Pt/Ti4O7 is 0.05, 0.1, 0.2) were successfully synthesized. Uniformly dispersed platinum nanoparticles exhibit disparate morphologies, rod-like for Pt/Ti4O7-5 and approximately spherical for Pt/Ti4O7-10 and Pt/Ti4O7-20. Small-angle deflections and lattice reconstruction induced by strong metal–support interactions were observed in Pt/Ti4O7-5, which indicated the formation of a new phase at the interface. However, lattice distortions and dislocations for higher loading samples imply the existence of weak metal–support interactions. A possible mechanism is proposed to explain the different morphologies and varying metal–support interactions (MSI). With X-ray photoelectron spectroscopy, spectrums of Pt and Ti display apparent shifts in binding energy compared with commercial Pt-C and non-platinized Ti4O7, which can properly explain the changes in absorption ability and oxygen reduction reaction activity, as described in the electrochemical results. The synthetic method, Pt loading, and surface coverage of the support play an important role in the adjustment of MSI, which gives significant guidance for better utilizing MSI to prepare the target catalyst.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3