The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review

Author:

do Nascimento Jéssica Luisa Alves,Chantelle Lais,dos Santos Iêda Maria Garcia,Menezes de Oliveira André LuizORCID,Alves Mary Cristina FerreiraORCID

Abstract

Semiconductors based on transition metal oxides represent an important class of materials used in emerging technologies. For this, the performance of these materials strongly depends on the size and morphology of particles, surface charge characteristics, and the presence of bulk and surface defects that are influenced by the synthesis method and the experimental conditions the materials are prepared. In this context, the present review aims to report the importance of choosing the synthesis methods and experimental conditions to modify structural, morphological, and electronic characteristics of semiconductors, more specifically, tin oxide (SnO2), since these parameters may be a determinant for better performance in various applications, including photocatalysis. SnO2 is an n-type semiconductor with a band gap between 3.6 and 4.0 eV, whose intrinsic characteristics are responsible for its electrical conductivity, good optical characteristics, high thermal stability, and other qualities. Such characteristics have provided excellent results in advanced oxidative processes, i.e., heterogeneous photocatalysis applications. This process involves semiconductors in the production of hydroxyl radicals via activation by light absorption, and it is considered as an emerging and promising technology for domestic-industrial wastewater treatment. In our review article, we focused on the photodegradation of different organic dyes and types of persistent organic pollutants using SnO2-based photocatalysts, and how the efficiency of these materials can be impacted by synthesis methods and experimental conditions employed to prepare them.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3