ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants

Author:

Toma Elena E.,Stoian Giuseppe,Cojocaru BogdanORCID,Parvulescu Vasile I.,Coman Simona M.ORCID

Abstract

Currently, carbon quantum dots (CQDs) have been widely investigated as an enhancing photocatalytic component of various nanocomposites. In this study, hetero-structures containing carbon quantum dots (CQDs) associated to zinc oxide were prepared following two one-pot procedures: (i) a hydrothermal approach in which commercial ZnO was used as carrier for CQDs; and (ii) an approach in which the ZnO/CQDs samples were produced in situ by adding zinc acetate to an aqueous suspension of CQDs. CQDs were prepared in advance by a low-temperature hydrothermal (LHT) treatment of useless humins wastes produced by the glucose dehydration in an acidic medium. These samples were characterized by several techniques such asadsorption-desorption isotherms of liquid nitrogen at 77K, X-ray diffraction (XRD), infrared diffuse reflectance with Fourier transform (DRIFT) and UV-vis spectroscopy. The photocatalytic behavior of these materials was investigated in the degradation of methylene blue (MB). The obtained results revealed electronic interactions between CQDs and ZnO which have as an effect an enhancement of the charge separation and diminution of the charge recombination. In accordance, a correlation between the photocatalytic activity and the intrinsic properties of ZnO/CQDs has been evidenced. The highest photocatalytic activity corresponded to the heterostructure containing highly dispersed narrow sized CQDs onto ZnO. Under visible light irradiation and after 180 min of irradiation, MB was degraded by as much as 97.6%.

Funder

Ministerul Cercetării și Inovării

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3